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Abstract

This white paper proposes ZetaChain, a blockchainwith generic omnichain smart
contract support that connects both smart contract blockchain such as Ethereum,
Ethereum L2 rollups, Solana, Terra, and Algorand, and even non smart contract
blockchains such as Bitcoin and Dogecoin. ZetaChain consists of a Proof-of-Stake
blockchain and observers and signers for external blockchains. The observers
scan external chains for relevant events, transactions, and states at a point in
time, and reach consensus on observation on ZetaChains blockchain. The sign-
ers collectively possess a single Threshold Signature Scheme (TSS) key that is able
to send authenticated messages to external chains and hold assets like normal ac-
counts/addresses on external chains. Smart contracts on ZetaChain support arbi-
trary logic that executes conditionally on external chain events, and can directly
update external chain states via its TSS signed transactions. ZetaChain thereby
enables omnichain dApps that interact with different blockchains natively and
directly without wrapping or bridging any assets.

1. Introduction

It’s hard to imagine a single blockchain would suffice for all our society’s use cases. A
multi-chain future seems inevitable. However, a multi-chain future without interoper-
ability between the blockchains could be paralleled to the Internet before TCP/IP. To-
day’s blockchains are too fragmented and are by-nature not interoperable, hindering
mass adoption of the technologies. For example, a decentralized application (dApp)
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must be married to a specific blockchain. If a user onboards into the crypto ecosys-
tem through a given dApp, this fragmentation makes immense barriers for the user
to fluidly adopt or try a dApp on another chain. To address the issues of interop-
erability, there have been a few proposals and projects that specifically emphasize
the ability to inter-operate. However, the majority of interoperability systems only
apply to specific blockchains, standardize their protocols within their own systems
requiring other blockchains to adopt or through complicated, restricted, and/or less
secure bridges to join (see Figure 1). In this whitepaper we propose a novel, public
L1 blockchain that actively and agnostically connects blockchains and facilitates in-
teroperability. Furthermore, we propose a generic smart contract on blockchain that
can hold and manipulate assets on external blockchains directly, thereby enabling
generic smart contracts that can custody assets on external chains. This opens the
door to boundless cross-chain dApps.

Blockchains are naturally closed systems. The goal of this whitepaper is to design
and specify a practical system that is generic in its inter-blockchain capability, with-
out forcing existing blockchains to adopt new standards or a new blockchain that
every assets needs to move to, and do so in a decentralized, byzantine fault tolerant
way. In other words, we aim to create a public blockchain that supports real cross
blockchain transactions, message delivery, and general cross-chain smart contracts.
According to our extensive survey, to satisfy this goal, the best pragmatic approach is
the decentralized notary scheme on top of an incentivized Proof-of-Stake replicated
state machine (aka blockchain) which we call ZetaChain.

ZetaChain is first of all a public blockchain with Proof-of-Stake validators. It’s trusted
that a super majority (>66% nodes) of the validator nodes are honest and act according
to protocol, and collectively serve as notaries. In addition to being a blockchain, in-
teroperability requires observing other blockchains. Thus each ZetaChain validator
node is attached with an observer that scans other blockchains for relevant events
(event log, transaction, or state at a certain time). The observers report the relevant
events to ZetaChain and reach consensus. ZetaChain uses custom logic to update its
state in response to the reported events. On the other hand, in order to change state on
other blockchains, each validator is also attached with a signer holding a key share.
Collectively all the validators hold a single public/private key pair which can initi-
ate transactions on other blockchains to change state directly. The signature scheme
can be some kind of threshold signature scheme such as GG18/GG20 ECDSA/EdDSA,
or BLS threshold/aggregate signatures, depending on the cryptography on different
chains and their smart contract capability/cost. The presence of a single public key
and address in the ZetaChain system allows ZetaChain to custody assets on external
blockchains which might not have adequate smart contract capability such as Bit-
coin. Such ability allows powerful cross-chain (or omnichain) dApps to be built on
top of native ZetaChain cross-chain smart contracts. This capability looks much like
on Ethereum where a smart contract can be trusted to manage assets according to
predetermined rules, except on ZetaChain, a smart contract can leverage and manage
assets on any connected blockchain.
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Figure 1. Before and After ZetaChain. Sub figure (a) on the left: Current ecosystem.
Users and developers are siloed into respective chains, and current cross-chain so-
lutions are disparate, resulting in major, growing fragmentation. Sub figure (b) on
the right: Ecosystem with ZetaChain. Users, developers, and apps can operate across
chains in a seamless manner. New paradigm of Omnichain dApps enabled.

In summary, ZetaChain is designed to be a decentralized cross-blockchain smart con-
tract platform. The vision of ZetaChain is to be a public computer on all important
blockchains, on top of which cross-blockchain decentralized applications can be easily
built as public, trustless, and persistent smart contracts.

2. Background: Evolution of Blockchains

2.1. Bitcoin: the original decentralized cryptocurrency

Blockchain, pioneered by Bitcoin, is a decentralized and permissionless public ledger
built on cryptography. The coremechanism is byzantine fault tolerant distributed con-
sensus, which Bitcoin solved by a combination of techniques from cryptography, eco-
nomic incentives, and computer science. Key innovations in Bitcoin include the use of
elliptic curve digital signatures algorithm (ECDSA) for self-custody of funds, and the
use of Proof-of-Work to reach distributed consensus (ordering of the ever growing log
of transactions) and maintain resistance against sybil attacks. Bitcoin also introduces
the first major application of blockchain technology—a p2p cryptocurrency. The Bit-
coin network has been highly successful, even though it has not fulfilled its promise
of being electronic cash. Rather, Bitcoin has become the most secure, decentralized,
and stable store of value due to its technical simplicity and robustness, high degree
of decentralization and low barrier of participation, and predictable and conservative
monetary policy.
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The Bitcoin network consists of nodes connected by a p2p network. Participants in-
clude users and miners. The Bitcoin network collectively maintains a growing ledger
that is a sequence of user transactions. A user transaction is a signed message that
spends a certain amount of coins controlled by the user. The Bitcoin network does not
explicitly maintain the balance state of each account; the only state of the network
is the set of current UTXOs—unspent transaction outputs. A users balance of BTC is
the sum of all UTXOs that can be spent by the user. A user transaction includes one
or more UTXOs as inputs, and creates one or more UTXOs as outputs, thus changing
the state (UTXO set). Bitcoin supports a limited form of scripting: a transaction can
send coins to a script, and whoever can satisfy the script (i. e. supply data to make it
evaluate to 1) may spend the coins. The scripting language is deliberately simple and
Turing-incomplete — namely without branch and looping structures — but supports
quite a few simple but fundamentally useful applications such as multi-sig, atomic
swaps, etc.

2.2. Ethereum: the programmable blockchain with smart con-
tracts

While Bitcoin is conceptually a simple ledger (ordered sequence of transactions) with
basic scripting features that has served as the canonical example of a blockchain, it is
not the limit of what a blockchain can do. For example, due to the limited scope of the
verification function of the Bitcoin protocol, its not possible to issue new coins on the
Bitcoin network. The Bitcoin network is not programmable in the sense that an arbi-
trary state transition function can be implemented. The only state transition function
that Bitcoin supports is the hard-coded UTXO set change. In summary, no applica-
tions other than BTC currency can piggy-back on the Bitcoin network, inheriting its
consensus, decentralization, and security. To extend the scope of blockchain to sup-
port Turing-complete programmability, Ethereum was born. Ethereum borrows the
Proof-of-Work from Bitcoin for its consensus, and has made several important innova-
tions that make it a public programmable blockchain. First, Ethereum defines a virtual
machine (EVM) that provides a Turing-complete sandbox environment to specify ar-
bitrary state transition functions (smart contracts). Second, Ethereum moves away
from the UTXO model in Bitcoin to an account-based system where account stores
state. There are two kinds of accounts: External Owned Accounts (EOA) which are
controlled by a private key, and smart contract accounts which work autonomously
according to their own logic. The availability of smart contracts on Ethereum makes
it one of the most widely used dApp blockchains with thousands of applications de-
ployed, such as financial derivatives, exchanges, NFTs, gambling, and games. Smart
contracts on Ethereum are like objects in an object-oriented programming language
where state can be stored and functions can be called to change its state. Users can
interact with smart contracts by sending messages to it, and smart contracts can also
send messages to other smart contracts (invoking) to change their state. The smart
contracts can enable very complex applications, and can enable some very powerful
operations such as flash-loans or flash-swaps that have no analogy in non-blockchain
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applications. This is made possible by the powerful atomicity of transaction that in-
vokes smart contract functions: it either completes or completely reverts. Over the
years more and more blockchains such as Polkadot, Solana, Avalanche, and Cosmos
have arisen and support nearly Turing-complete smart contracts.

2.3. Emergence and challenges of multi-chain

While some people tend to favor one chain to rule them all, the reality is that blockchain
technology and markets are evolving at astonishing pace and it is becoming more
and more apparent that the future of the ecosystem will be comprised of multiple
blockchains serving their own purpose with their own tradeoffs in terms of security,
decentralization, scalability, speed, cost, compliance, and so on. In this multi-chain
future, a key limitation is that blockchains are designed to be a closed system. Trans-
actions that happen on a blockchain can only rely on the state of their respective
blockchain, and can only modify the state of their respective blockchain. External in-
formation cannot be reliably brought to the blockchain without a trusted third party
(oracle). Transactions that involve multiple blockchains must go through a trusted
party, such as a centralized exchange. As a result, there is currently no decentralized,
permissionless, and public service that facilitates generic atomic transactions (not
only atomic swapping, but also arbitrary logic) that involves multiple blockchains.

Popular cross-chain or cross-blockchain strategies include side-chains, relays, notary
schemes, hash time-lock contracts, and blockchains of blockchains.

• First, side-chains/relays are popular solutions to implement bridges that pri-
marily enable portable assets. In these, some assets have a home ledger that
is authoritative on its ownership, but through bridges one can move the asset
to other blockchains while being confident that the asset is able to move back
to the home blockchain. Relay is one of the direct mechanisms to facilitate in-
teroperability, where instead of relying on a trusted intermediary to provide
information on chain A to chain B, chain B implements a thin client of chain
A using smart contracts, and is able verify whether a particular event, trans-
action, or state at certain point in time has occurred on chain A. This is often
called trustless because there is no additional trust assumption beyond trusting
the two involved chains. In other words, no trust is required on the validity
of the delivery mechanism of messages from chain A to chain B, other than
that the message is delivered and delivered in time. Examples of relays include
the BTCRelay on Ethereum (a SPV client of Bitcoin) and the Rainbow bridge
of Ethereum on the NEAR blockchain. Relays are also popular mechanisms for
side-chains.

• Second, notary schemes are mechanisms where a trusted entity (or a set of) is
tasked with notarizing claims such as event X has happened on blockchain A.
The most obvious notary schemes are centralized exchanges, which are trusted
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Strategy Use scenarios Trust Assumption
Relay/Side-chain Portable Assets Trustless
Notary Scheme Arbitrary Trustful
HTLC Atomic Swaps Trustless
BoB New blockchains Trustless/Trustful

Table 1. Comparison of existing cross-chain strategies

entities to facilitate cross-blockchain exchanges of coins. Notary schemes do
not have to be centralized; for example the Interledger project, in its atomic
mode can be categorized as a decentralized, byzantine fault tolerant notary
scheme to facilitate cross-ledger transfers. Note that notary schemes are the
most flexible in terms of interoperability use cases, because they are able to act
with arbitrary logic in response to events on discrete blockchains. Another no-
table decentralized notary scheme is THORChain which implements a DEX for
native coins across several different chains, using a set of incentivized validators
as notaries.

• Third, hash time-lock contracts (HTLC) are constructs of smart contracts that
can facilitate atomic swaps across blockchain chains trustlessly without addi-
tional trust beyond the participating two blockchains. The keywords are atomic
and trustless. Atomic means that the transactions (involving two parties) are
either complete or revert (as if nothing has happened). Trustless means no third-
party needs to be trusted for the atomic swap. It works roughly by two parties
interactively deploying and interacting with smart contracts on both sides. The
core idea is with a hash of secret that is conceived by party A and used by both
parties, and party A is forced to reveal the secret when claiming party B’s coin,
which can then be used by party B to claim party A’s coin. Examples of HTLC
include XClaim BTC/Ethereum or BTC/Polkadot bridge, and the Lightning Net-
work on Bitcoin.

• Fourth, blockchains of blockchains (BoB) are frameworks that provide data, net-
work, consensus, incentive, and contract layers for constructing application-
specific blockchains that inter-operate between each other. Note that BoB does
not solve current interoperability problems directly. Rather it enables the cre-
ation of new inter-operable blockchains. To connect to legacy chains, some sort
of bridge or other mechanism shown above must be employed. Important ex-
amples of BoB are Polkadot and Cosmos, built on Substrate and Tendermint as
consensus engines, and XCMP and IBC as cross-chain communication proto-
cols.

Each of these broad strategies has its strengths and weaknesses in technical complex-
ity, trust assumptions, level of interoperability, and use cases. Our discussion here is
brief and incomplete, but still we can very roughly categorize the characteristics of
these strategies; see Table 1 for a comparison of these strategies.
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3. Interoperability Related Work

In this section, we pick some of the recent andmost relevant projects, ideas, and trends
to provide context for this paper and ZetaChain. For more academic cross-blockchain
research please refer to a comprehensive survey [1].

3.1. Cross-chain Communication

A basic building block of any cross-blockchain interoperability is the ability to com-
municate and prove to chain B that a certain transaction happened on chain A.

BTCRelay [4], Rainbow Bridge [5]: Consider the task of building a one-way bridge
on Ethereum from Bitcoin. When a user on Bitcoin sends 1 BTC to a given custody
address, one wrapped BTC is issued on Ethereum. To do this in a trustless way, a
smart contract on Ethereum can verify the transaction on Bitcoin, and issue a cor-
responding wrapped BTC coin on Ethereum. BTCRelay is such an example. For an
Ethereum smart contract to verify the transaction on Bitcoin, someone (off-chain ser-
vice) can submit the transaction, together with the transaction Merkle proof. The
Ethereum smart contract verifies the proof based on the chain of block headers stored
in the smart contract. This smart contract is essentially a light client of Bitcoin. Even
though the strength of the proof is a bit lower than a full node (would be vulnerable to
certain 51% attacks), this kind of bridge is strong and trustless, albeit rather expensive
to operate because the chain of the block headers have to be constantly updated in
the smart contract. The Rainbow Bridge is also a good example of a trustless bridge,
between Ethereum and NEAR.

Wormhole [19]: Wormhole is also a cross-chain message delivery service, but it’s not
trustless. Rather, it depends on a set of validator nodes to attest the validity of the
message delivered. Consider the same task of building a one-way bridge on Ethereum
from Solana. When a user sends 1 SOL to a certain custody address, one wrapped SOL
is issued on Ethereum. The Ethereum smart contract does not verify the transaction
on Solana in order to issue the wrapped coin; it trusts that the super majority of the
set of Wormhole validators are honest and correct. The security of Wormhole relies
on the super-majority of the validators being honest. It appears that Wormhole relies
on reputations of validators to build trust.

LayerZero [13]: LayerZero is a communication layer for facilitating cross-chain mes-
sage delivery. It’s essentially a weaker form of Relay (see introduction about Relay).
The idea is to enable Chain B to verify that a given transaction or event has hap-
pened on Chain A. If Chain B supports general smart contracts, a light client of chain
A can be implemented in a smart contract so as to verify information about Chain
A in a trustless manner. However, even a light client can be expensive to run in a
smart contract, both in terms of computation and storage; for example the BTCRe-
lay on Ethereum appears to be discontinued. LayerZero reduces these costs with an
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ultra-light client on smart contract which does not report and store the whole chain
of block headers (or a significant part of it). Rather, LayerZero relies on trusting a
block header without a chain of block headers that can trace back to some known
trusted block. The key assumption of the security of LayerZero is that the two par-
ties—Relayer, who provides proof of transaction, and Oracle, who provides the block
header—are non-colluding. In our terminology and categorization, LayerZero is not
trustless due to the trust needed for the independence of the two parties. We use
a stricter definition of trustless as where the validity (not necessarily liveness, cen-
sorship resistance) of messages does not depend on trust in anything other than the
two participating blockchains. If the relayer and oracle collude, they can defraud Lay-
erZero by making up an invalid block header (costs about 2 Ether to compute PoW
nonce which is the coinbase reward of each block), and make chain B believe that a
non-existent transaction has happened on chain A. LayerZero essentially outsources
their security to third-party relayer and oracle.

IBC [10]: Inter-Blockchain Communication (IBC) protocol is a TCP/IP-like protocol
for communication between sovereign blockchains. IBC is an end-to-end, connection
oriented, stateful protocol between blockchains. Practically, IBC usually requires fast
finality chains such as Tendermint, and the blockchain must support IBC protocol
such as Cosmos SDK-built chains. For the blockchains that support IBC, they can es-
tablish connections, and through these connections one blockchain can verify proofs
against the consensus states of another blockchain. Each blockchain that supports
IBC must run a light client that is capable of verifying proofs on the other blockchain
in order for them to be connected. The IBC module must also handle production of
proofs, and a separate process (relayer) must relay the packet and proof to the coun-
terparty chain. Among the blockchains that support IBC, very strong interoperability
can be established, such as coin transfer, atomic swaps, cross-chain decentralized ex-
changes, and even cross-chain smart contracts. The major drawback of IBC is that
it requires adoptionwhich is a lot to ask of other blockchains, and also might not be
possible for legacy blockchains.

3.2. Cross-blockchain Asset Transfer

Hop [9]: Hop is a protocol to send coins across rollups and their underlying L1 in a
trustless manner. Rollups are by default siloed systems and the asset transfer between
rollups and L1 can be slow and expensive. For example, optimistic rollups usually
take a week to exit into L1; on the other hand, zk-rollups can instantly validate exit
but it involves high computation which is expensive on L1. Hop solves the problem
of moving coins across rollups by creating bridges and bridge coins, and uses AMM
markets to exchange coins rather than sending coins directly. Specifically, Hop creates
bridge coins for each rollup, and the bridge coins can be moved around in batches so
as to decrease the cost. The bridge coin acts as an intermediary asset in transferring
a coin on rollup A to rollup B. Hop uses the existing rollup bridges to do cross-rollup
transactions so it does not need a separate off-chain service.
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Connext [3]: Connext is a trust-minimized solution for cross-chain asset swaps. The
idea is somewhat like generalized atomic-swaps, using Hash Time Locked Contracts
(HTLC) to ensure transaction atomicity. It uses a network of off-chain routers to cre-
ate a market and AMM style pricing mechanism. The safety of user funds do not
depend on third-parties, only the liveness of the system does. Compared to Hop, Con-
next uses off-chain services and therefore can connect beyond rollups on a single L1;
compared to externally verified solutions, Connext is application specific and not gen-
eral purpose. For example, it cannot be adapted to send arbitrary messages or cross
chain contract calls.

Multichain [17]: Multichain (previously Anyswap) is a cross-chain bridge and cross-
chain router network. The network consists of smart contracts on connected chains,
and the Fusion network. The key technology is distributed TSS key among MPC
nodes, and DCRM (Distributed Control Rights Management) [6]. The TSS key scheme
used in Multichain is GG20 [8], the same as THORChain and ZetaChain. The DCRM
Multi-party Interoperability andCustody is a decentralized custodian technique. DCRM
consists of two important functions: Lock-In, and Lock-Out. In Lock-in, a user locks
an external asset (such as Bitcoin), and the system generates a wrapped version of
Bitcoin owned by a newly generated distributed TSS private key. The system gener-
ates an address on Bitcoin, and the user transfers Bitcoin to that address. When the
transfer completes, the Fusion node picks up the confirmation on the Bitcoin network,
and issues a wrapped version of BTC to the user on the Fusion network. The Lock-In
is thus complete. The Lock-Out process is similar but in reverse. It appears that Multi-
chain is a bridge that locks coins on connected chains and wraps them on the Fusion
blockchain. Multichain can therefore be considered as a centralized bridge.

THORChain [15], Sifchain [18], Chainflip [16]: THORChain (alongwith similarly built
competitors like Sifchain and Chainflip) is a decentralized liquidity network that facil-
itates AMM style native L1 coins on different blockchains, including Bitcoin, Litecoin,
Bitcoin Cash, Ethereum. Notably, THORChain is not, strictly speaking, a bridge, as
it does not lock & wrap coins and transact on wrapped coins. Rather, THORChain
is an application-specific blockchain that maintains the pool, logic, and management
of vaults on different chains for swapping. THORChain distributes the signing key
using the GG20 TSS scheme and has its own implementation based on Binance’s TSS
library. ZetaChain is in-part inspired by the design of THORChain, and can be thought
of as a simpler and more generalized platform which enables not only swapping, but
a generic smart contract platform that allows arbitrary cross-chain applications to be
built easily. For example, developers can implement similar functionality to THOR-
Chain as a smart contract on ZetaChain.

Synapse [14]: According to public information, Synapse is supposed to be an exter-
nally verified validator set based system for cross-chain swaps. It issues AMM smart
contracts on external chains, and some composite stablecoin as an intermediary asset
to cross-chain. To move the intermediary stablecoins across chains it appears to use a
burn and mint strategy. Detailed public information about their validator mechanism
is not available at the time of writing this paper.
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3.3. Cross-blockchain Smart Contract

Quant Network [20]: Functionality-wise, the Quant network and its Overledger [20]
is the closest to ZetaChain. The Quant network is a centralized service that provides a
standardized web-service-based access to the connected public or private blockchains,
or regional legacy database ledgers. It supports general programmability triggered by
events on those blockchains (transaction to/from a given address, smart contract in-
teraction, events, state changes, etc.), via popular languages and frameworks such as
Javascript, Java, Python, etc. ZetaChain aims to achieve similar general programma-
bility, but with an incentivized public blockchain, with far reduced trust assumptions,
more transparency, complete verifiability and auditability.

ICP/Chain-Key [2]: The Internet Computer Protocol (ICP) has proposals to enable
interoperability to the Bitcoin network via its Chain-Key technology, which is similar
to the distributed threshold signature scheme. With Chain Key, ICP in principle can
custody funds on the Bitcoin network. It’s unclear how ICP observes the Bitcoin
network, and how their smart contract platform interacts with external blockchains.

HyperService [11]: HyperService proposes a cross-chain smart contract platform that
is chain agnostic. It consists of two components: a high level language HSL to describe
a cross-chain dApp, and an execution layer that ensures financially atomic transac-
tions.

3.4. Blockchain of Blockchains (BoB)

The most prominent BoBs are Cosmos and Polkadot. BoBs are usually frameworks
that aim at tight inter-operable application-specific blockchains. Polkadot, for exam-
ple, provides a relay chain which handles all consensus, and Parachains which can
be different blockchains with different state-transition functions. The Parachains are
tightly integrated and can inter-operate seamlessly via the relay-chain.

The Cosmos ecosystem, on the other hand, does not share consensus, so the interop-
erability between Cosmos chains is less tight. Every Cosmos chain is sovereign with
their own choice of consensus (typically Tendermint-based fast finality). The Cosmos
ecosystem relies on the IBC protocol (see section 3.1), and special blockchains called
Hubs to facilitate cross-chain asset transfers, and even cross-chain smart contracts.

To enjoy interoperability in Cosmos or Polkadot, the blockchains typically need to be
built on some common ground. Legacy blockchains, or new blockchains with their
own consensus, cannot be part of BoBs.
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4. ZetaChain Blockchain Architecture

4.1. Overview

At a high level, ZetaChain is a Proof of Stake (PoS) blockchain built on the Cosmos
SDK and Tendermint PBFT consensus engine. As a result, ZetaChain enjoys fast block
time (~5s) and instant finality (no block confirmation needed, no re-organization al-
lowed). The Tendermint PBFT consensus engine has been demonstrated to scale to
~300 nodes in production, and with future upgrades with BLS threshold signatures
the number can potentially increase to 1000+. The throughput of transactions of the
Tendermint consensus engine that ZetaChain uses can reach 4000+ transactions per
second (TPS) under ideal network conditions [10]. Note that the cross-chain TPS can-
not reach nearly as high because cross-chain transactions latency/throughput may be
limited by external chain latency/throughput, TSS key-sign throughput, and various
other factors such as external node RPC speed, etc.

The ZetaChain architecture consists of a distributed network of nodes, often referred
to as validators. Validators act as decentralized observers that can reach consensus
on relevant external state and events, and can also update external chain state via
distributed key signing. ZetaChain accomplishes these functions in a decentralized
(without a single point of failure, trustless, permissionless), transparent, and efficient
way. Contained within each validator is the ZetaCore and ZetaClient. ZetaCore is re-
sponsible for producing the blockchain and maintaining the replicated state machine.
ZetaClient is responsible for observing events on external chains and signing out-
bound transactions. ZetaCore and ZetaClient are bundled together and run by node
operators. Anyone can become a node operator to participate in validation provided
that enough bonds are staked. See Figure 2 for a high level illustration.

Validators: ZetaChain uses the Tendermint consensus protocol which is a partially
synchronous Byzantine Fault Tolerant (BFT) consensus algorithm. Each validator
node can vote on block proposals with voting power proportional to the staking coins
(ZETA) bonded. Each validator is identified by its consensus public key. Validators
need to be online all the time, ready to participate in the constantly growing block
production. In exchange for their service, validators will receive block rewards, and
potentially other rewards such as gas fees or processing fees, proportional to their
bonded staking coins.

Observers: Another set of important participants of ZetaChain consensus are the
observers who reach consensus on external chain events and states. The observers
watch externally connected chains for certain relevant transactions/events/states at
particular addresses via their full nodes of external chains. The observers can be fur-
ther divided into two roles: sequencer and verifier. The sequencer discovers relevant
external transactions/events/states and reports to verifiers; the verifiers verify and
vote on ZetaChain to reach consensus. The system requires at least one sequencer
and multiple verifiers. The sequencer does not need to be trusted, but at least one
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honest sequencer is needed for liveness.

Signers: The ZetaChain collectively holds standard ECDSA/EdDSA keys for authen-
ticated interaction with external chains. The keys are distributed among multiple
signers in such a way that only a super majority of them can sign on behalf of the
ZetaChain. Its important to ensure that at no time is any single entity or small frac-
tion of nodes able to sign messages on behalf of ZetaChain on external chains. The
ZetaChain system uses bonded stakes and positive/negative incentives to ensure eco-
nomic safety.

In practice, all above roles (except sequencer) are collocated in the same computer
node, sharing software and credentials such as validator keys and bonded stakes and
the associated rewards/slashing. ZetaChain is planned to transition from Proof-of-
Authority at first to a fully delegated Proof-of-Stake (DPoS) model over time, and
gradually delegate the governance of the blockchain to ZETA coin holders via on-
chain voting.

Figure 2. ZetaChain High Level Architecture.

4.2. Observers

Observers are tasked with monitoring external chains for relevant transactions. Ob-
servers are continually scanning for external chain events responsible for both burn-
ing and minting the native coin (ZETA), messages & smart contract calls, as well as
other events that dApps register on ZetaChain. Each observer independently observes
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using its own full node of external chains, and all the observations must reach con-
sensus on the ZetaChain before being considered finalized. Once events are finalized,
it automatically triggers an execution of ZetaChain logic, which can be defined as a
custom Cosmos SDK module, or ZetaChain native smart contract.

There are two modes of observation: Active and Passive mode. Active observation
constantly scans the external blockchains for relevant transactions/events/states. Pas-
sive mode relies on a sequencer (or a small set thereof) to scan and report transac-
tions/events, together with Merkle proof. The observers verify the proof and reach
consensus on the verification on-chain. The active mode has the advantage of being
always live and censorship-resistant due to decentralization, but the cost of each node
is high because it needs full nodes (of external chains) for the scanning. Passive mode
is much less costly, as verification can be done with a light client. Only one or a few
sequencers need access to a full node, which is much cheaper and makes scaling to
multiple external chains and more validator nodes much easier. The disadvantage of
passive mode is that the liveness of external chain inbound observation is dependent
on the sequencer, and also subject to censorship by the sequencer. This is the same
situation as the optimistic rollup where the liveness of the rollup is dependent on
a sequencer. To mitigate this, everyone is able to be a sequencer if they so choose,
and a sequencer can be incentivized by the creation of a competitive market. In par-
ticular, dApps have a vested interest in running a sequencer. Another advantage of
running passive observation mode with a sequencer is that the dApps are in control
of the observation ordering. For efficiency reasons, the active mode does not enforce
observation ordering. But if the observation ordering is important to a dApp, it can
opt to run its own sequencer in synchronous observation mode (i. e. wait for each
observation to be finalized by ZetaChain before moving on to the next).

4.3. Multi-party Threshold Signature Scheme

ZetaChain needs to hold an account on external chains in order to custody funds on
that chain (manage a pool, vault, etc.), and to perform privileged actions (burn, mint,
move funds out of the vault, etc.). This is required for general-purpose cross-chain
smart contracts, as a core feature of smart contracts is to manage assets autonomously.
On Ethereum for example, a smart contract has an address and can hold any asset like
an External Owned Address (EOA, normal user account). This ability enables many
powerful applications such as AMMpools, lending/borrowing pools, etc., where users
pool their assets and let smart contracts manage them according to a smart contracts
predetermined rules. In order to hold an account, ZetaChain needs to have a private
key. To avoid a single point of failure (single location of the private key, single dealer
in generating the key), ZetaChain needs a distributed threshold signature scheme.

This is also needed to support non-smart-contract chains such as Bitcoin, Dogecoin,
or smart-contract platforms that are expensive to verify multi-sig. To avoid any sin-
gle point of failure, ZetaChain uses state-of-the-art multi-party threshold signature

13



Figure 3. Leaderless TSS Keygen and Keysign Overview

scheme (TSS) [7, 8] based on implementations fromTHORChain TSS [15] and Binance
tss-lib [12]. To the outside world, the ZetaChain validators collectively possess a sin-
gle ECDSA/EdDSA private key, public key, and address, and the signature signed by
ZetaChain can be verified efficiently and natively by standard ECDSA/EdDSA verifica-
tion procedure by the connected blockchains. Internally, the private key is generated
without a dealer, and the private key is distributed in all the validators. At no time is a
single entity or a minority of validators able to piece together the private key and sign
messages on behalf of the whole network. The key generation and signing procedures
are done by Multi-Party Computation (MPC) which reveal no secret of any participat-
ing node. Because ZetaChain can hold a TSS key and address, ZetaChain can support
smart contracts that can manage native vaults/pools on connected chains including
Bitcoin. This effectively adds smart contract capabilities to the Bitcoin network, and
potentially other non-smart contract blockchains. The TSS employed by ZetaChain
gives the performance and convenience of hot wallet with cold wallet level security.
See Figure 3 for an illustration.

To sign in a decentralized manner, ZetaChain employs a multi-party 𝑡, 𝑛-threshold
ECDSA scheme based on [7]. This leaderless Threshold Signature Scheme (TSS) per-
forms key generation and signing in a distributed fashion. That is, no single validator
or outside actor has access to the complete private key at any point in time, and no
private information is leaked in key generation or signing. For efficiency, ZetaChain
employs batched signing and parallel signing to improve signers throughput.
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4.4. Cross-Chain Smart Contract and Zeta Virtual Machine

The ZetaChain hosts an Ethereum Virtual Machine (EVM) compatible execution layer
called zEVM. Aside from supporting all features of EVM and normal interactions with
EVM (contract creation, contract interaction, composition of contracts, etc), the dis-
tinguishing feature of zEVM is that

• contracts on zEVM can be called from external chains
• contracts on zEVM can generate outbound transaction on external chains

These two additional features make the zEVM a general purpose programmable plat-
form that supports the notion of cross-chain transactions that alter states in different
chains atomically and in a single step.

4.4.1. Challenges in General Purpose Cross-Chain Transaction

There are two key challenges in designing a general-purpose cross-chain transaction
platform: asynchrony and atomicity.

The first challenge is that communication between chains is necessarily via message
passing and inherently asynchronous between heterogeneous chains. This means un-
like smart contracts on a single chain (such as EVM), querying or changing the state of
another chain is asynchronous. This precludes the common convenient synchronous
function calls from cross-chain smart contracts. The cross-chain smart contract pro-
gramming model thus is best considered as a finite state machine, where state change
is triggered by the messages (observations) from external chains. The app contract
thus will be structured as distributed event-drive state machine triggered bymessages.
This is quite a more complicated programming model from the synchronous model
of single chain smart contract.

The second challenge is the atomicity of cross-chain transactions. As cross-chain
transaction involves altering states on multiple chains, if one part of the state change
fails, all previous state changes need to be reverted. Blockchains reverts are powerful
mechanisms to maintain atomicity, but no blockchain is built with consideration such
that revert is conditional onwhat happened on another blockchain. Tomaintain cross-
chain transaction atomicity, any cross-chain solution must adequately handle reverts,
otherwise cross-chain applications will be too onerous to reason about and build.

In this paper we explore a viewpoint of hybrid UTXO and account-based approach,
playing to the strengths of each. Essentially, we use UTXO to represent and track ex-
ternal blockchain transactions, and use account-based smart contracts for logic and
managing shared global states. We treat observed external events as a synthetic UTXO.
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Figure 4. Hybrid UTXO-account flow.

A UTXO includes the amount of ZETA coin (burned), amount of another coin (op-
tional, for example, BTC on the Bitcoin network where it’s impossible to issue ZETA
coin), and a script msg (roughly equivalent to a message or function call on Ethereum).
The smart contract on ZetaChain runs the msg and generates an Event that tries to
spend the UTXO on ZetaChain. The Event is then picked up by ZetaClient signers and
they will sign a transaction to an external chain. The ZetaChain Virtual Machine and
ZetaClient will validate certain invariants, one of which is that the output ZETAmust
be equal to the input ZETA in the UTXO. Once the outbound transaction is confirmed
and observed, the UTXO is marked as spent and deleted from the state machine. If
the outbound transaction fails (insufficient gas, etc.), the UTXO is marked as revert
and refunds of ZETA and/or associated coins are refunded on the source chain. When
the refund is confirmed then the UTXO is deleted from the state machine. See Figure
4 for an illustration.

We use the synthetic UTXO model for its accountability, simplicity, and scalability
while avoiding the key limitation of UTXOwhich is the expressiveness of its scripting,
and awkwardness in certain important applications (one TX per block in AMM).

4.4.2. Mechanism 1: Cross-Chain Message Passing

In the Cross-Chain Message Passing (CCMP) mechanism, the ZetaChain and zEVM
serve only as a relayer of messages (cross-chain contract calls) and value (multi-chain
token ZETA). The general programmability of zEVM is not necessary (except in spe-
cialized cases help handling converting gas) for this mechanism.

The ZetaChain CCMP style handles reverts by creating a “revert” transaction that
undoes the committed state changes that needs to be reversed. The responsibility of
the “revert” transaction is shared among the ZetaChain protocol and app contract;
the protocol is responsible to initiate the revert transaction if needed, and refund the
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value (in ZETA token only, as its supply is controlled by the ZetaChain protocol). The
app contract is responsible to do app level reversing the state; for example, in a cross-
chain swap app, reverting a committed swap tx from user means swapping ZETA back
to the asset that user put in, and send back to the user.

The workflow of a CCMP style cross-chain transaction works like this.

1. An end user interacts with a Contract C1 on Chain A.
2. The interaction leaves an event or transactionmemo, with user specified [chainID,

contractAddress, message]. (the message is arbitrarily encoded application
data in binary format.

3. ZetaChain observers (in zetaclient) pick up this event/memo and report to
zetacore, which verifies the inbound transaction.

4. zetacoremodifies the CCTX (cross-chain tx) state variablewith OutboundTxParams
which instructs the TSS signers (in zetaclient) to build, sign, and broadcast
external transaction.

5. The zetaclient TSS signers observe the OutboundTxParams in the CCTX, and
build outbound tx, enter into a TSS keysign ceremony to sign the transaction,
and then broadcast the signed transaction to the external blockchains. For
CCMP, the outbound transaction is mainly calling the user specified contract
with specified addresses and parameters.

6. The CCTX structure also tracks the stages/status of the cross-chain transaction.
7. Once the broadcasted transaction is included in one of the blocks (said to be

“mined” or “confirmed”), zetaclientswill report such confirmation to zetacore,
which will update the CCTX status.

8. If the “confirmed” outbound transaction was successful, the CCTX status be-
comes OutboundMined, and the CCTX is considered in its terminal state and
will not be updated anymore. This CCTX processing is completed.

9. If the “confirmed” outbound transaction is failure (e.g. revert on Ethereum
chains), then the CCTX will updates it status to PendingRevert if possible, or
Aborted if revert is not possible. The CCTX processing is completed if it
goes to Aborted status.

10. If the new status is “PendingRevert”, a second OutboundTxParams should be
already in the CCTX, which instructs the zetaclients to create a “Revert” out-
bound tx to the incoming chain & contract, allowing the incoming contract to
implement a application level revert function to cleanup contract state.

11. The zetaclients will build the revert transaction, enter into TSS keysign cere-
mony to sign the transaction, and broadcast to the incoming blockchain (Chain
A in this case).

12. Once the revert transaction is “confirmed” on Chain A, the zetaclients will
report the transaction status to zetacore.

13. If the revert transaction is successful, the CCTX status becomes Reverted, and
the CCTX processing is completed.

14. If the revert transaction is failure, the CCTX status becomes Aborted, and the
CCTX processing is completed.
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To start a CCMP, one initiates a transaction that directly or indirectly calls the Connector.send()
function on the supported smart contract chains:

interface ZetaInterfaces {
struct SendInput {

uint256 destinationChainId;
bytes destinationAddress;
uint256 destinationGasLimit;
bytes message;
uint256 zetaValueAndGas;
bytes zetaParams;

}
}

interface ZetaConnector {
function send(ZetaInterfaces.SendInput calldata input) external;

}

As can be seen from the interface, the sending party (could be an user EOA directly, or
through an application contract indirectly) specifies the destination chain, the desti-
nation contract on the destination chain, and the parameters to call a specific function
of that contract (message).

On the receiving side (the destination chain), the contract specified on the sending
side will be called; specifically, the following function must be present in the receiving
contract with exactly the signature:

interface ZetaInterfaces {
struct ZetaMessage {

bytes zetaTxSenderAddress;
uint256 sourceChainId;
address destinationAddress;
uint256 zetaValue;
bytes message;

}
}

interface ZetaReceiver {
function onZetaMessage(ZetaInterfaces.ZetaMessage calldata zetaMessage) external;

}

The onZetaMessage() function will be called by the ZetaChain protocol with input
ZetaMessage struct filled inwith appropriate values. Notably, the zetaTxSenderAddress
will be the sending party address (could be EOAor the contract that calls Connector.send());
the zetaValue will be the ZETA token sent (burnt) from the sender side, less some
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transaction fees; message will be the message that user specified.

The application contract will receive zetaValue amount of ZETA token, and can im-
plement business logic in this onZetaMessage() function. If this onZetaMessage()
is successful, the this message passing CCTX is completed; if it failed (reverted), then
9th step above will be invoked, and the zetaTxSenderAddress will be interpreted as
a contract, and it must implement the following function onZetaRevert().

interface ZetaInterfaces {
struct ZetaRevert {

address zetaTxSenderAddress;
uint256 sourceChainId;
bytes destinationAddress;
uint256 destinationChainId;
/// @dev Equals to: zetaValueAndGas - ZetaChain gas fees -
/// destination chain gas fees - source chain revert tx gas fees
uint256 remainingZetaValue;
bytes message;

}
}

interface ZetaReceiver {
function onZetaRevert(ZetaInterfaces.ZetaRevert calldata zetaRevert) external;

}

Again, the onZetaRevert() function of contract at zetaTxSenderAddress address
will be invoked with ZetaChain filled struct ZetaRevert. The remaining ZETA token
will be refunded back to this contract, and this contract should implement applica-
tion level revert since the cross-chain contract call failed. Such revert might include
refunding user, cleanup its state, etc.

4.4.3. Mechanism 2: Omni-Chain Smart Contract

Note that in the Mechanism 1 (CCMP) style, each participating blockchain needs to
support smart contract (this precludes Bitcoin, Dogecoin, etc), and the dApp needs to
deploy at least one contract to each chain. The application state and logic is scattered
around all those application contracts in a distributedmanner. Synchronizing the state
and communicate between contracts on different chain becomes expensive, slow, and
complicates the handling of reverts.

To reduce the complexity and surface area between different chains, ZetaChain in-
troduces Mechanisms 2, also called omni-chain smart contract. The distinguishing
features of omni-chain smart contract are that omni-chain smart contract
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• is arbitrarily programmable, like a regular smart contract on zEVM
• manages foreign assets on external chains directly
• can be called from external chains

The most important foreign assets on external chain are fungible tokens, such as na-
tive gas assets (Ether, BNB, Matic, or Bitcoin) and regular ERC20 tokens (USDT, USDC,
etc).

On zEVM, a smart contract can directly custody these foreign assets and manipulate
them as if they are native zEVM assets. On external chains, these fungible tokens are
controlled by the TSS address; internal to zEVM, they are represented as ZRC20–a
ERC20 compatible contract butwith interfaces to handle deposit andwithdraw–which
act as the ledger to keep track of the native assets that ZetaChain holds.

Any smart contract on zEVMcan become omni-chain via interactingwith these ZRC20
contracts and implement a simple interface to be callable from external chains:

interface zContract {
function onCrossChainCall(

address zrc20,
uint256 amount,
bytes calldata message

) external;
}

Calling a omni-chain smart contract from external chains:

1. A user sends native asset to the TSS address on Chain A (for ERC20, the user
needs to send to a ERC20Custody contract controlled by the TSS address), with
a memo specifying [zEVMContractAddress, message].

2. The observers in zetaclients observe the incoming omni-chain call and report
to zetacore.

3. zetacore invokes the depositAndCall() function of the SystemContract, which
in turn calls the onCrossChainCall() function of the specified address zEVMContractAddress.
The ZetaChain protocol (more specifically the fungiblemodule) fills in the ap-
propriate parameters in the onCrossChainCall() call:

• zrc20 will be filled with the ZRC20 contract address that manages the
foreign coin that the user sent in step 1;

• amountwill be filled with the amount of the foreign coin that the user sent
in step 1;

• messagewill be the message in the memo of the transaction that user sent
in step 1;

4. The omni-chain smart contract will be called in the following way
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zContract(zEVMContractAddress).onCrossChainCall(zrc20,amount,message)

5. The app contract should implement its business logic in the zEVMContractAd-
dress function, with entry point being onCrossChainCall() function. This
omni-chain smart contract interaction is completed if the execution does
not revert and there is no output of external asset.

6. If the zEVM contract execution failed (reverted), then a CCTX is created to
revert the inbound tx; namely sending the foreign coin back to the user (the
same coin, with same amount as user sent in step 1, less applicable fees).

7. If there is an output of onCrossChainCall (for example, it calls some ZRC20
withdraw()), then a separate CCTX will be created to instruct and track trans-
ferring foreign asset to user specified address on external chains. These with-
drawals are simple token transfers and should not fail (in exceptional cases such
as the destination address is blacklisted by USDT, the CCTX will transition into
Aborted state and no revert or refund will be attempted.

Note 1: if the app contract does not need to be called from external chains, then it
does not need to implement the zContract interface.

Note 2: As demonstrated above, the capability of omni-chain smart contract depends
on omni-chain primitive contracts such as ZRC20, so it’s limited to what omni-chain
primitives are provided. ZetaChain provides ZRC20 that manages all fungible for-
eign tokens, and may introduce further asset types such as non-fungible token, non-
transferable token, digital identity, etc.

Note 3: the omni-chain smart contract is deployed only on zEVM, with all the logic
and states in a single place. Moreover, the app contract does not need to handle reverts,
because all reverts are handled by ZetaChain protocol. Therefore omni-chain smart
contract addresses both of the two major challenges in general cross-chain transac-
tion; namely asynchrony and scatter of state and logic into multiple contracts on mul-
tiple chains, communicated only via messages. As a result, omni-chain smart contract
dApps are much easier to build than message passing ones.

Note 4: omni-chain smart contract does not require deploying app smart contract
on external chains, therefore can support non-smart contract chains such as Bitcoin
network. Omni-chain cross-chain apps can be initiated on Bitcoin and can also settle
on Bitcoin.

4.4.4. Omnichain Smart Contracts vs. Messaging

While both mechanisms can support many types of applications, they offer fairly sig-
nificant differences in the architecture those applications would adopt.

More complicated dApps may prefer Omnichain Smart Contracts because the logic &
state is in a single place, whereas with messaging, you must broadcast messages and
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Figure 5. Omnichain smart contract-based application. Note that there is a single
contract that receives input, writes output, maintains state, and orchestrates exter-
nal assets for the application. The number of external transactions required for an
omnichain dApp increases only based on the required outbound transactions, like
withdrawing assets to an external chain’s address

state sync across many contracts on different chains, which can lead to more attack
surface and more gas fees (each message requires additional gas to be paid, and the
number of messages you must send to maintain a full state sync scales). In other
words, Omnichain Smart Contracts behave, for developers, as if all assets were on
one chain (see Figure 5).

Common applications like Uniswap V2/V3, Curve, Aave, Compound, and so on that
have been audited and battle-tested on Ethereum/EVM can easily be deployed and
built on top of in ZetaChain’s Omnichain Smart Contracts. One can extend these
applications by adding in compatibility with ZRC-20, but those changes are minimal
and the majority of logic may remain the same, and users may interact with these
applications in single-step transactions just as they would on Ethereum (or by calling
them from external chains). On the other hand, with messaging, in many situations
(especially those that are more complex), a developer must recreate the logic in a com-
pletely different, asynchronous messaging and state-sync system; messaging cannot
leverage existing work in the same way.

ZRC-20 can easily support Bitcoin/Cardano/XRP which do not have capability or ef-
ficiency to support general purpose smart contracts for applications like swapping,
lending, etc. Messaging cannot work for these chains, because messaging requires
smart contracts on any connected chain.
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Figure 6.Messaging-based application. Note that for contracts to stay in sync across
connected chains, the number of messages required increases exponentially with the
number of chains involved.

Messaging generally makes sense in simpler use cases between 2 or just a few chains,
or where state should heavily be based in one chain, and sent or interacted with from
other chains. Application-specific bridges, for example, where the goal is simply to
get data/value into one chain, could make sense to build with messaging. Appli-
cations that must utilize contracts on external chains may also need a messaging-
based component. For more complex applications, the number of messages (and thus
gas/transactions) required to synchronize state across multiple chains can increase
exponentially with the number of chains involved (see Figure 6). For example, man-
aging a vault or lending protocol with assets across many chains could be difficult to
manage with just messaging.

Message passing style logic and state are distributed on asynchronous chains which
adds significant complexity to maintaining cross-chain transaction atomicity, and
forces dApps to program in an event (message) driven way that is generally harder
to do than synchronously in a single chain. Omnichain smart contracts on the other
hand offer the novel ability to develop multichain applications in a more synchronous,
atomic environment as if they were on one chain.

4.4.5. Fees & Gas

To prevent spam and ensure fair and efficient use of the blockchain resources (compute
and storage), the user must pay proper fees for processing the cross-chain transaction.
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Unlike transaction on a single chain, a cross-chain transaction naturallymight involve
several different gas assets and need to pay more than one types of tokens for gas fees.
This is rather inconvenient, and may add undue operational cost or risk to operate the
cross-chain solution. For example, if one invokes a contract on Ethereum from BSC
chain, the user needs to pay both BNB and Ether as gas fees; but how can the user
pay Ether on BNB? Do they need to acquire “wrapped” Ether on BSC? Which version
of the wrapped Ether? Who wraps and unwrap the Ether?

Alternatively, one might just ask the user to pay in a single asset (for example, only
BNB), and then some off-chain service converts the BNB into Ether to reimburse the
protocol which needs to pay Ether for the outbound tx processing. This is quite an op-
erational burden, and runs counter to the autonomous nature of sovereign blockchain
that does not need centralized operator.

ZetaChain completely automates the gas handling and conversion on-chain, and with
market force to maintain proper conversion rate. Also, the conversion of different gas
assets are synchronous with the CCTX itself so the settlement is as fast as possible.
The way ZetaChain does it is to rely on ZRC20 and their AMM pools on zEVM (cur-
rently Uniswap v2 pools). All gas asset has a corresponding ZRC20 which pairs with
ZETA (native gas token on zEVM) on zEVM.

Let us consider the two cases when the user need to pay gas fees in coins they might
not have:

• In message passing, the user pays a single asset (ZETA token) for all gas fees.
The ZetaChain protocol converts proper amounts of ZETA into outbound chain
gas asset ZRC20 synchronously and use the balance to pay outbound transac-
tion gas fees.

• In omni-chain smart contract ZRC20, when a user (or a smart contract) wishes
to withdraw the foreign asset, the user will need to pay the outbound gas
fee. The withdrawing smart contract can acquire the outbound chain gas as-
set ZRC20 from the internal AMM pools on zEVM to pay gas synchronously.

In either case, the multi-gas handling of ZetaChain is sound (which means that the
protocol always has enough gas asset to pay outbound tx gas fees), and the conversion
rate is determined by market force. As zEVM ZRC20 assets are easily withdrawn to
external chain with on-chain contracts, the markets on zEVM are connected with
other markets therefore we can expect market forces to maintain price parities.

5. ZETA Token

ZETA token is a multi-chain utility token that are essential in the funtions of the
ZetaChain blockchain and its cross-chain infrastructure.
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1. Securing the DPoS of the ZetaChain conensus via staking/delegation/slashing.
2. Anti-spam and ensuring fair and efficient use of blockchain resources such as

compute and storage
3. Universal gas asset used to pay gas fees on multiple chains
4. Represent value that can transfer from one blockchain to another

6. Use Cases & Applications

In this section we discuss some sample applications of ZetaChain. These examples
are not anywhere near comprehensive, since the general smart contract and interop-
erability capabilities of ZetaChain provide a platform for virtually unlimited creativity
in terms of omnichain application-building.

6.1. Smart Contract Managed External Assets

A powerful feature of smart contracts is that smart contracts can hold any assets that
a normal account can hold, and are able to receive and spend that asset according to
programmed logic. However, important blockchains like Bitcoin, Dogecoin, Monero,
etc., do not have general enough smart contract capability to support useful applica-
tions such as AMM exchanges, collateralized borrowing/lending markets with pools,
and the like. There is currently noway to involve native Bitcoin (without wrapping) in
arbitrary logic in a decentralized and permissionless manner. The cross-chain smart
contract capability of ZetaChain can hold and use assets on external chains directly,
therefore enabling smart contract managed native Bitcoin on ZetaChain, among other
native assets such as ETH, ERC20, Algorand ASAs, etc. Furthermore, through Ze-
taChain smart contracts and with message passing, cross-chain dApps can be easily
composed with smart contracts on the participating chains, with ZetaChain smart
contracts managing native Bitcoin vaults.

Let us look at an example in some detail. The mechanism for ZetaChain smart con-
tracts to manage BTC on Bitcoin is as follows. The initialization of smart contract
requests KeyGen to generate a TSS key which acts as the address of a Bitcoin vault.
The ZetaClient will monitor the TSS address and upon identifying incoming transac-
tions to the TSS vault, it parses the data from the Bitcoin transaction in OP_RETURN
and invokes the zetaProcess function with the parsed data on the smart contract.
The smart contract takes actions accordingly (such as credit to certain accounts, send-
ing out another asset according to AMM pricing, etc.). To send out Bitcoin from the
smart contract, the smart contract emits a specific Event that the ZetaClient will pick
up and sign & broadcast to Bitcoin network. The smart contract must also imple-
ment a function zetaExternalTxConfirmwhich will be invoked when the outbound
external chain transaction is mined.
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6.2. Cross-chain AMM Exchanges

ZetaChain can enable true cross-chain AMM decentralized exchanges, built on top
of smart contracts. There are two ways of constructing an AMM DEX on ZetaChain:
message passing and native ZetaChain smart contracts. The key difference is whether
the pool is managed by an external smart contract or native ZetaChain smart con-
tract. With message passing, the asset pool is managed by smart contracts on external
chains; with the native ZetaChain smart contract approach, the pool is managed by
ZetaChain smart contracts through a TSS account.

Specifically, inmessage passing, the assets aremanaged by smart contracts on external
chains, paired with a ZETA coin. A swap of asset X on chain A for asset Y on chain
B can be accomplished by: 1) swap X for ZETA on chain A using smart contract
managed pool and AMM; 2) pass message, together with the ZETA coin from chain A
to chain B; 3) chain B smart contract managed pool (Y/ZETA) swaps ZETA coin for Y.

With native ZetaChain smart contracts, the ZetaChain TSS account holds all the na-
tive assets on external chains, which can be managed by ZetaChain contracts directly.
The ZetaChain smart contract implements AMM logic that determines pricing, swap,
liquidity providers, and fees.

In the message passing approach, the dApp states and logic are spread across all the
external chains; ZetaChain only acts as amessage verifier and relayer. The advantages
in this approach is that existing infrastructure can be reused (for example, on EVM
chains Uniswap contracts can be reused tomanage pool X/ZETA), and the dApp needs
only to handle the cross-chain messaging to implement conditional execution. On the
other hand, in the native ZetaChain smart contract approach, the logic and state of
the dApp lives on ZetaChain, a single platform with a unified interface to interact
with external chains. The advantages in this approach are the ease of dApp devel-
opment (minimal development efforts in accommodating new chains), and flexibility
(no longer constrained to chain idiosyncrasies and message-passing cross-chain in-
teraction). Additional benefits are that it relies on smart contracts on external chains
minimally, so complex logic can work on not only smart-contract chains but also
UTXO chains like Bitcoin.

6.3. Cross-chain message passing with value/data

The ability to reliably and securely pass messages from one chain to another can
enable powerful cross-chain applications, even without native ZetaChain smart con-
tracts. The message passing functionality consists of communication endpoints on all
external chains. The ZetaChain validators serve as a byzantine fault tolerant notary
that attests the validity of events/transactions on chain A to chain B, and as a relayer
of messages. Chain B’s smart contract only needs to whitelist the TSS address of
ZetaChain in order to trust that ZetaChain has verified the events on chain A. This al-
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Figure 7. DEX built with ZetaChain message passing. Leveraging external chain
smart contract DEXs, one can build a cross-chain swap by sending messages with
ZETA.

Figure 8. DEX built with ZetaChain Smart Contracts. Since ZetaChain TSS can man-
age external chain pools with its smart contracts, DEX can even support non-smart-
contract chains and assets where transactions are simple and single-step.
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lows conditional execution on chain B’s contract depending on transactions/messages
from chain A, which opens a wide range of cross-chain dApps, such as AMM DEXs,
NFT, etc. (see more below). An important and convenient feature of the ZetaChain
system is that the messages can be attached with value in the form of the ZETA coin
(natively cross-chain), which considerably simplifies dApps which require moving the
value cross- chain.

The messaging service of ZetaChain consists primarily of interface contracts on the
connected chains. To access the message passing service, a dApp needs to deploy a
smart contract on both the source chain and destination chain. On the source chain,
the sending smart contract can invoke a zeta.MessageSend function with the follow-
ing information: sending address, destination chain id, destination contract address,
ZETA coin to transfer, gas limit on destination chain, contract message for destination
transaction (binary or JSON encoded payload), and transaction index. The sending
contract must implement a zetaMessageRevert function, which will be called by Ze-
taChain when the destination message delivery and processing of a transaction fails
(for example, due to out of gas, out of funds, invalid message, etc.). Upon failure, the
ZetaChain system will refund the ZETA coin to the sending address (less gas fees),
and invoke the dApp contract zetaMessageRevert function which is supposed to re-
vert application actions (unlocking a locked NFT, for example). On the destination
chain, the dApp contract must implement a function zetaMessageReceive which
takes the same parameters as the sending zeta.MessageSend, and can perform appli-
cation logic (such as minting an NFT that has been locked on the source chain). The
destination contract will also receive a ZETA coin (less gas fee), which can be used as
a value transfer cross-chain.

Message passing can enable a variety of important applications such cross-chain DEX,
borrowing/lending, multi-chain NFT, etc.

6.4. Multi-chain NFT

Non-fungible Token (NFT) is an emerging concept that has found use in art collection,
gaming, event tickets, and many other applications. In contrast to fungible tokens
such as ETH, BTC, or ERC-20 tokens, each NFT is unique and not interchangable
with another NFT in the same collection. This non-fungibility can be essential in
applications such as art, real-estate, etc. On Ethereum, for example, the most common
NFT standards are ERC-721 and ERC-1155. In ERC-721, an NFT is basically a tuple
(contractAddress, tokenId). The smart contract that issues the NFTs keeps track
of the owners of each NFT in a map owner=>tokenId. The NFT can be transferred
from one owner to another, and each NFT owner can be queried.

In a multi-chain NFT world, where the same collection of NFTs are issued on multiple
chains (such as Ethereum, Flow, Solana), and one NFT can transfer to another chain,
a challenge in the bridge model is the knowing the provenance of a given NFT – who
is the owner of a given NFT now that the NFT could be on one of multiple chains
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Figure 9. Multi-chain NFT. With a decentralized issuing authority (ZetaChain TSS),
one can have an NFT that is easily sent between chains, where ownership and current
location are easily verifiable.

and where are the records of the transactions of the transfers? This problem can be
solved by ZetaChain smart contracts which facilitate cross-chain ownership transfers
of NFTs. It can work as follows. Each chain will have an escrow smart contract con-
trolled by the ZetaChain key. To transfer an NFT to another chain, one transfers the
NFT to the escrow, pays transaction fee in ZETA coin, and ZetaChain will mint the
NFT on the destination chain. The smart contract on ZetaChain keeps track of the
owner and blockchain where the NFT is at any given time. While there have been ex-
perimental cross-chain NFT bridges, having a decentralized issuing authority allows
an NFT to be natively cross-chain, making it simpler and feasible to create, verify, and
exchange NFTs cross-chain.

6.5. Other Use Cases

These are just a few other potential use cases of ZetaChain. Given ZetaChain is a
general smart contract platform, you can also imagine that any application you deploy
on a single blockchain/smart contract platform can be expanded to operate across all
connected chains.

6.5.1. Universal Payments

A system that lets users/EOAs send payments from/to any asset on any chain. This can
help vendors and customers have a decentralized, universal, and accessible payments
route that doesnt require users to have a hyper-specific set of assets on a specific
chain.
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6.5.2. Universal Identity and Assets

Identity system, name service, or Soul Bound Tokens that can serve as identities across
all chains. With omnichain capabilities, identities can interact with other chains ag-
nostically and in a future-proof manner as ZetaChain adds support for more chains.
Users need not have individual identities/domains per chain, and can utilize their as-
sets (gaming, collectibles, fungible tokens, etc.) from all chains from a single place.

6.5.3. Multi-chain, Multi-signature vaults

Securely custody and manage assets on multiple chains with a multi-sig that involves
accounts and/or messages from many chains.

6.5.4. Omnichain Account Abstraction or Smart Contract Wallets

Smart contract wallets that can manage transactions to/from all chains, allowing
things like gasless transactions, complex/multi-transactions, etc. that involve mul-
tiple chains. This could be imagined as an EIP-4337 but with omnichain capabilities.

6.5.5. Omnichain DeFi

DEXs, lending/borrowing, perps, and so on can support seamless 1-step trades and
transactions that unify liquidity across chains. Leveraging omnichain smart contracts,
one can significantly reduce common complexity and concerns of slippage, race-conditions,
MEV that are involved with transacting fungible tokens that are often involved in to-
days cross-chain applications. Financial applications spanning many chains can be
built with the same logic as if they were all on one chain.

6.5.6. Omnichain DAOs

Decentralized Autonomous Organizations and governance tooling that lets groups of
people orchestrate activity, governance, and asset management in a chain-agnostic
manner.
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7. Security

7.1. Decentralization

The ZetaChain system is designed to not have a single point of failure, primarily
through decentralization.

ZetaChain is decentralized architecturally and infrastructurally. Decentralization is
an effective way to be fault tolerant, resist attacks and collusions. The ZetaChain
nodes are run by individuals or organizations without permission. No single point of
failure in ZetaChain node (ZetaCore, ZetaClient) affects the system.

On the other hand, to effect changes in external chains, ZetaChain must act as a sin-
gle entity to sign messages, therefore raising the issue of centralized signing key. Ze-
taChain utilizes GG20 leaderless Threshold Signature Scheme (TSS) which does the
key generation and key sign in a distributed, decentralized way. No single ZetaChain
node or other individual ever has access to the complete private key at any point in
time. Effectively, the ZetaChain node (the signer in ZetaClient, to be specific) has
equal “vote” in signing outbound transactions, like in an m/n multisig.

To strike a balance between decentralization and coordination, certain aspects of Ze-
taChain are not fully decentralized, or designed to evolve into more decentralized
gradually. For example, the software is currently developed by a central entity, which
means the system is susceptible to software bugs from a single source. To defend
against bugs ZetaChain employs multi-level blanket protection, to be discussed in
more detail below.

7.2. Securing Inbound and Outbound Transactions

The ZetaCore takes in events from the observers in the ZetaClients. The ZetaClients
monitor events on external chains via a variety of sources–node as service providers
such as Infura, their (validator operator) own instance of full node, or full node run
by the developers and partners. The observed event (as an inbound transaction to
ZetaChain) must reach consensus on the ZetaCore to trigger state changes in the
ZetaCore.

The state change in ZetaCore causes the signers of ZetaClient to prepare, sign, and
broadcast transactions to external chains. ZetaChain’s consensus mechanism ensures
that the transaction is agreed upon; the TSS key ensures that only super majority of
ZetaClients can sign.

All the inbound/outbound transactions and decisions made (through state changes)
are recorded in the ZetaChain blocks which are available, immutable, verifiable, and
completely transparent.
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7.3. Comprehensive Defense Against Arbitrary Minting

Since the only native value that can move cross-chain through ZetaChain is the ZETA
token, and ZetaChain effectively only manages transferring ZETA token from chain
A to chain B, it’s possible to offer comprehensive protection against the only way
to steal value from Zetachain: invalid minting that inflates the total supply of ZETA
across chains.

We offer comprehensive protection against minting without commensurate burning
as follows:

ZetaChain nodes will check total supply across chains before initiating the minting
of ZETA token. This protects against software bugs or vulnerability in the ZetaChain
node software. The token contracts on the chains (except on Ethereum, where a lock-
ing contract will assume the role) checks total supply of ZETA across chains before
minting. The total supply of ZETA is provided by Chainlink and posted on each con-
nected chain. This protection ensures that no one can arbitrarily mint and that the
total supply of ZETA remains fixed across chains. It should be noted that the two
comprehensive defenses, while providing strong protection against software bugs and
stealing from ZetaChain (including every holder of the ZETA token), they do not elim-
inate exploits. For example, if the attacker gains control of 2/3 validators, or the at-
tacker is able to exploit a bug in the software, he is able to redirect a legitimate mint
from another user to his wallet. However in this worst case scenarios the impact is
likely to be contained as the attacker can only steal from active users at that specific
time, and the system would be promptly stopped once noticed by users

In summary: the funds at risk in the worst-case scenario is only the ZETA amount
that is being moved cross-chain at the time of the exploit. Funds at rest are never at
risk.

7.4. What Happens When External Chains are Attacked

If the external chains connected by ZetaChain are being attacked (such as 51% attack),
which can result in the following violations: 1) double spend leading to inflated supply
of ZETA token; 2) censorship; 3) reversion leading to loss of atomicity of cross-chain
transaction, as the source part might be no longer existent; 4) hard fork, chain split;
and more. The design of ZetaChain can mitigate a few of these cases, or contain the
damage from unlimited spreading. For example, an external chain causing unlimited
mint (by repeatedly reverting and paying) cannot happen because of the total supply
check of ZetaChain. By extension, the dApps that use ZETA coin for all cross-chain
value transfer are also protected from unlimited inflation. For other external chains
that are being exploited, the ZetaChain should go into an emergency halt to assess the
situation. The recovery will be coordinated by stakeholders and governance mecha-
nisms.
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8. Conclusion

In this whitepaper we survey the landscape of cross-chain interoperability. While
bridging is the main solution today and the focus of many emerging projects, Ze-
taChain explores a more ambitious and general approach: native cross-chain smart
contracts that directly interact with nearly any external blockchain. No wrapping
around assets are needed to transfer values cross-chain and no bridges are needed
for every pair of blockchains. The ZetaChain smart contract can custody assets on
an external chain directly, and manages assets according to predetermined arbitrary
logic. Every external chain interaction is settled on external chains directly. As such,
ZetaChain provides the most general platform for decentralized cross-chain applica-
tions to build on with connections to almost any existing or future blockchain and/or
L2/rollup, with access to the whole supply of native assets on those chains.
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